Example
Solve:
0.8x−5=7.
Solution:
The only decimal in the equation is
0.8. Since
0.8=108, the LCD is
10. We can multiply both sides by
10 to clear the decimal.
|
0.8x−5=7 |
Multiply both sides by the LCD. |
10(0.8x−5)=10(7) |
Distribute. |
10(0.8x)−10(5)=10(7) |
Multiply, and notice, no more decimals! |
8x−50=70 |
Add 50 to get all constants to the right. |
8x−50+50=70+50 |
Simplify. |
8x=120 |
Divide both sides by 8. |
88x=8120 |
Simplify. |
x=15 |
Check: Let x=15. |
|
0.8(15)−5=?7
12−5=?7
7=7✓ |
|
Example
Solve:
0.06x+0.02=0.25x−1.5.
Answer:
Solution:
Look at the decimals and think of the equivalent fractions.
0.06=1006,0.02=1002,0.25=10025,1.5=1105
Notice, the LCD is
100.
By multiplying by the LCD we will clear the decimals.
|
0.06x+0.02=0.25x−1.5 |
Multiply both sides by 100. |
100(0.06x+0.02)=100(0.25x−1.5) |
Distribute. |
100(0.06x)+100(0.02)=100(0.25x)−100(1.5) |
Multiply, and now no more decimals. |
6x+2=25x−150 |
Collect the variables to the right. |
6x−6x+2=25x−6x−150 |
Simplify. |
2=19x−150 |
Collect the constants to the left. |
2+150=19x−150+150 |
Simplify. |
152=19x |
Divide by 19. |
19152=1919x |
Simplify. |
8=x |
Check: Let x=8. |
|
0.06(8)+0.02=0.25(8)−1.5
0.48+0.02=2.00−1.5
0.50=0.50✓ |
|
In the following video we present another example of how to solve an equation that contains decimals and variable terms on both sides of the equal sign.
https://youtu.be/pZWTJvua-P8
The next example uses an equation that is typical of the ones we will see in the money applications. Notice that we will distribute the decimal first before we clear all decimals in the equation.