We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

TEXT

Algebra Cheat Sheet

Fogli di trucchi di matematica Symbolab


Algebra Cheat Sheet

Criteri numeri

a\cdot 0=0 1\cdot a=a


Criteri espansione

-(a\pm b)=-a\mp b a(b+c)=ab+ac
a(b+c)(d+e)=abd+abe+acd+ace (a+b)(c+d)=ac+ad+bc+bd
-(-a)=a


Criteri frazioni

\frac{0}{a}=0 \: ,\: a\ne 0 \frac{a}{1}=a
\frac{a}{a}=1 (\frac{a}{b})^{-1}=\frac{1}{\frac{a}{b}}=\frac{b}{a}
(\frac{a}{b})^{-c}=((\frac{a}{b})^{-1})^{c}=(\frac{b}{a})^{c} a^{-1}=\frac{1}{a}
a^{-b}=\frac{1}{a^b} \frac{-a}{-b}=\frac{a}{b}
\frac{-a}{b}=-\frac{a}{b} \frac{a}{-b}=-\frac{a}{b}
\frac{a}{\frac{b}{c}}=\frac{a\cdot c}{b} \frac{\frac{b}{c}}{a}=\frac{b}{c \cdot a}
\frac{1}{\frac{b}{c}}=\frac{c}{b}


Criteri assoluti

\left| -a \right| = \left| a \right| \left|a\right|=a \: ,\: a\ge0
\left| ax\right| = a \left| x\right| \: , \: a\ge 0


Criteri potenze

1^{a}=1 a^{1}=a
a^{0}=1\:,\: a\ne 0 0^{a}=0\:,\: a\ne 0
(ab)^n=a^{n}b^{n} \frac{a^m}{a^n}=a^{m-n}\:,\: m>n
\frac{a^m}{a^n}=\frac{1}{a^{n-m}}\:,\: n>m a^{b+c}=a^{b}a^{c}
(a^{b})^{c}=a^{b\cdot c} a^{bx}=(a^b)^x
(\frac{a}{b})^{c}=\frac{a^{c}}{b^{c}} a^c \cdot b^c=(a\cdot b)^{c}


Regole Radicale

\sqrt{1}=1 \sqrt{0}=0
\sqrt[n]{a}=a^{\frac{1}{n}} \sqrt[n]{a^m}=a^{\frac{m}{n}}
\sqrt{a}\sqrt{a}=a \sqrt[n]{a^n}=a,\:a\ge0
\sqrt[n]{a^n}=|a|,\:\mathrm{n\:è\:pari} \sqrt[n]{a^n}=a,\:\mathrm{n\:è\:dispari}
\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:a,b\ge0 \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\:a,b\ge0


Criteri fattori

x^{2}-y^{2} = (x-y)(x+y)
x^{3}+y^{3} = (x+y)(x^{2}-xy+ y^{2})
x^{n}-y^{n} = (x-y)(x^{n-1}+x^{n-2}y+ \dots + xy^{n-2} + y^{n-1})
x^{n}+y^{n} = (x+y)(x^{n-1}-x^{n-2}y+ \dots - xy^{n-2} + y^{n-1}) \quad \quad \mathrm{n\:è\:dispari}
ax^(2n)-b = (\sqrt{a}x^n+\sqrt{b})(\sqrt{a}x^n-\sqrt{b})
ax^(4)-b = (\sqrt{a}x^2+\sqrt{b})(\sqrt{a}x^2-\sqrt{b})
ax^(2n)-by^(2m) = (\sqrt{a}x^n+\sqrt{b}y^m)(\sqrt{a}x^n-\sqrt{b}y^m)
ax^(4)-by^(4) = (\sqrt{a}x^2+\sqrt{b}y^2)(\sqrt{a}x^2-\sqrt{b}y^2)


Criteri fattoriali

\frac{n!}{(n+m)!}=\frac{1}{(n+1)\cdot(n+2)\cdots(n+m)} \frac{n!}{(n-m)!}=n\cdot(n-1)\cdots(n-m+1), n>m
0!=1 n!=1\cdot2\cdots(n-2)\cdot(n-1)\cdot n


Criteri Logaritmi

\log(1)=0 \log_a(a)=1
\log_{a}(x^b)=b\cdot\log_{a}(x) \log_{a^b}(x)=\frac{1}{b}\log_{a}(x)
\log_{a}(\frac{1}{x})=-\log_{a}(x) \log_{\frac{1}{a}}(x)=-\log_{a}(x)
\log_{a}(b)=\frac{\ln(b)}{\ln(a)} \log_{x}(x^n)=n
\log_{x}((\frac{1}{x})^{n})=-n a^{\log_{a}(b)}=b


Non definito

0^{0}=\mathrm{Indefinito} \frac{x}{0}=\mathrm{Indefinito}
\log_{a}(b)=\mathrm{Indefinito}\:,\: a\le0 \log_{a}(b)=\mathrm{Indefinito}\:,\: b\le0
\log_{1}(a)=\mathrm{Indefinito}


Regole numeri complessi

i^{2}=-1 \sqrt{-1}=i
\sqrt{-a}=\sqrt{-1}\sqrt{a}